Toán 10 Cánh Diều Chương 7 Bài 2Trắc nghiệm Toán 10 Cánh Diều Chương 7 Bài 2Giải bài tập Toán 10 Cánh Diều Chương 7 Bài 2

Phương pháp giải

a) Hai vectơ \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v \ne 0\) ) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1}{\rm{ = }}k{x_2}\) và \({y_1} = {\rm{ }}k{y_2}\) .

Bạn đang xem: Toán 10 cánh diều tập 2 trang 72

b) G là trọng tâm tam giác ABC thì tọa độ G là: \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

c) Tính tất cả các cạnh và các góc của tam giác ABC:

Nếu \(\overrightarrow a = \left( {x;y} \right) \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2}} \)

Với hai vectơ \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\)đều khác vectơ không, ta có:

+ \(\overrightarrow u \) và \(\overrightarrow v \) vuông góc với nhau khi và chỉ khi \({x_1}.{x_2} + {y_1}.{y_2} = 0\)

+ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2}}}{{\sqrt {x_1^2 + y_1^2} .\sqrt {x_2^2 + y_2^2} }}\)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AB} = \left( {6;2} \right),\overrightarrow {AC} = \left( {4; - 6} \right)\)

Do \(\overrightarrow {AB} \ne k.\overrightarrow {AC} \) nên A, B, C không thẳng hàng

b) Do G là trọng tâm tam giác ABC nên \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{ - 2 + 4 + 2}}{3} = \frac{4}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{3 + 5 + \left( { - 3} \right)}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy \(G\left( {\frac{4}{3};\frac{5}{3}} \right)\)

c) Ta có: \(\overrightarrow {AB} = \left( {6;2} \right),\overrightarrow {AC} = \left( {4; - 6} \right),\overrightarrow {BC} = \left( { - 2; - 8} \right)\)

Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {2^2}} = \sqrt {40} \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{4^2} + {{\left( { - 6} \right)}^2}} = \sqrt {52} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 8} \right)}^2}} = \sqrt {68} \end{array}\)

Ta có:

\(\begin{array}{l}\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{6.4 + 2.\left( { - 6} \right)}}{{\sqrt {{6^2} + {2^2}} .\sqrt {{4^2} + {{\left( { - 6} \right)}^2}} }} \approx 0,263 \Rightarrow \widehat {BAC} \approx {74^o}\\\cos \widehat {ABC} = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\left( { - 6} \right).\left( { - 2} \right) + \left( { - 2} \right).\left( { - 8} \right)}}{{\sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 8} \right)}^2}} }} \approx 0,47 \Rightarrow \widehat {ABC} \approx {62^o}\end{array}\)Áp dụng tính chất tổng ba góc trong một tam giác ta có: \(\widehat {ACB} \approx {180^o} - {74^o} - {62^o} \approx {44^o}\)

Giải bài 2 trang 72 SGK Toán 10 Cánh diều tập 2

Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).

a) Chứng minh ba điểm A, B, C không thẳng hàng.

b) Tìm tọa độ trọng tâm G của tam giác ABC.

c) Giải tam giác ABC (làm tròn các kết quả đến hàng đơn vị).


Lời giải:


Giải bài 3 trang 72 SGK Toán 10 Cánh diều tập 2

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).

a) Tìm tọa độ các điểm A, B, C.

b) Trọng tâm hai tam giác ABC và MNP có trùng nhau không? Vì sao?

Lời giải:


Vậy trọng tâm hai tam giác ABC và MNP trùng nhau.

Giải bài 4 trang 72 SGK Toán 10 Cánh diều tập 2

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2; 4); B(– 1; 1); C(– 8; 2).

a) Tính số đo góc ABC (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).

Xem thêm: Toán 12 Bài 2 Lớp 12 Toán 12 Bài 2: Cực Trị Của Hàm Số, Toán 12 Bài 2: Cực Trị Của Hàm Số

b) Tính chu vi của tam giác ABC.

c) Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.

Lời giải:

Giải bài 5 trang 72 SGK Toán 10 Cánh diều tập 2

Cho ba điểm A(1; 1) ; B(4; 3) và C (6; – 2).

a) Chứng minh ba điểm A, B, C không thẳng hàng.

b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.

Lời giải:


Vậy tọa độ điểm D là D(0; – 6).

Giải bài 6 trang 72 SGK Toán 10 Cánh diều tập 2

Chứng minh khẳng định sau:

Hai vectơ

*
cùng phương khi và chỉ khi có một số thực k sao cho x1 = kx2 và y­1 = ky2.

Lời giải:

Vậy suy ra điều phải chứng minh.

Giải bài 7 trang 72 SGK Toán 10 Cánh diều tập 2

Một vật đồng thời bị ba lực tác động: lực tác động thứ nhất

*
có độ lớn là 1 500 N, lực tác động thứ hai
*
có độ lớn là 600 N, lực tác động thứ ba
*
có độ lớn là 800 N. Các lực này được biểu diễn bằng những vectơ như Hình 23, với
*
,
*
,
*
. Tính độ lớn lực tổng hợp tác động lên vật (làm tròn kết quả đến hàng đơn vị).