Lớp 1

Tài liệu Giáo viên

Lớp 2

Lớp 2 - Kết nối tri thức

Lớp 2 - Chân trời sáng tạo

Lớp 2 - Cánh diều

Tài liệu Giáo viên

Lớp 3

Lớp 3 - Kết nối tri thức

Lớp 3 - Chân trời sáng tạo

Lớp 3 - Cánh diều

Tiếng Anh lớp 3

Tài liệu Giáo viên

Lớp 4

Lớp 4 - Kết nối tri thức

Lớp 4 - Chân trời sáng tạo

Lớp 4 - Cánh diều

Tiếng Anh lớp 4

Tài liệu Giáo viên

Lớp 5

Lớp 5 - Kết nối tri thức

Lớp 5 - Chân trời sáng tạo

Lớp 5 - Cánh diều

Tiếng Anh lớp 5

Tài liệu Giáo viên

Lớp 6

Lớp 6 - Kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Tiếng Anh 6

Tài liệu Giáo viên

Lớp 7

Lớp 7 - Kết nối tri thức

Lớp 7 - Chân trời sáng tạo

Lớp 7 - Cánh diều

Tiếng Anh

Tài liệu Giáo viên

Lớp 8

Lớp 8 - Kết nối tri thức

Lớp 8 - Chân trời sáng tạo

Lớp 8 - Cánh diều

Tiếng Anh

Tài liệu Giáo viên

Lớp 9

Lớp 9 - Kết nối tri thức

Lớp 9 - Chân trời sáng tạo

Lớp 9 - Cánh diều

Tiếng Anh

Tài liệu Giáo viên

Lớp 10

Lớp 10 - Kết nối tri thức

Lớp 10 - Chân trời sáng tạo

Lớp 10 - Cánh diều

Tiếng Anh

Tài liệu Giáo viên

Lớp 11

Lớp 11 - Kết nối tri thức

Lớp 11 - Chân trời sáng tạo

Lớp 11 - Cánh diều

Tiếng Anh

Tài liệu Giáo viên

Lớp 12

Lớp 12 - Kết nối tri thức

Lớp 12 - Chân trời sáng tạo

Lớp 12 - Cánh diều

Tiếng Anh

Tài liệu Giáo viên

Giáo viên

Lớp 1

Lớp 2

Lớp 3

Lớp 4

Lớp 5

Lớp 6

Lớp 7

Lớp 8

Lớp 9

Lớp 10

Lớp 11

Lớp 12


Giải mục 1 trang 52, 53

Cho dãy số (left( {{u_n}} right)) với ({u_n} = {3.2^n})a) Viết năm số hạng đầu của dãy số nàyb) Dự đoán hệ thức truy hồi liên hệ giữa ({u_n}) và ({u_{n - 1}})

Xem lời giải


Giải mục 2 trang 53, 54

Cho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công bội (q)a) Tính các số hạng ({u_2},{u_3},{u_4},{u_5}) theo ({u_1}) và (q).b) Dự đoán công thức tính số hạng thứ n theo ({u_1}) và (q).

Bạn đang xem: Toán lớp 11 bài 7 cấp số nhân

Xem lời giải


Giải mục 3 trang 54, 55

Cho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1} = a) và công bội (q ne 1)Để tính tổng của n số hạng đầu({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})

Xem lời giải


Bài 2.15 trang 55

Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:a) 1, 4, 16, …;b) (2, - frac{1}{2},frac{1}{8},; ldots )

Xem lời giải


Bài 2.16 trang 55

Viết năm số hạng đầu của mỗi dãy số (left( {{u_n}} right)) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng ({u_n} = {u_1}.{q^{n - 1}})

Xem lời giải


Bài 2.17 trang 55

Một cấp số nhân có số hạng thứ 6 bằng 96 và số hạng thứ 3 bằng 12. Tìm số hạng thứ 50 của cấp số nhân này

Xem lời giải


Bài 2.18 trang 55

Một cấp số nhân có số hạng đầu bằng 5 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 5115?

Xem lời giải


Bài 2.19 trang 55

Một công ty xây dựng mua một chiếc máy ủi với giá 3 tỉ đồng. Cứ sau mỗi năm sử dụng, giá trị của chiếc máy ủi này lại giảm 20% so với giá trị của nó trong năm liền trước đó. Tìm giá trị còn lại của chiếc máy ủi đó sau 5 năm sử dụng.

Xem lời giải


Bài 2.20 trang 55

Vào năm 2020, dân số của một quốc gia là khoảng 97 triệu người và tốc độ tăng trưởng dân số là 0,91%. Nếu tốc độ tăng trưởng dân số này được giữ nguyên hằng năm, hãy ước tính dân số của quốc gia đó vào năm 2030.

Xem thêm: Tài liệu bài tập excel nâng cao cho kế toán excel, access to this page has been denied

Xem lời giải


Bài 2.21 trang 55

Một loại thuốc được dùng mỗi ngày một lần. Lúc đầu nồng độ thuốc trong máu của bệnh nhân tăng nhanh, nhưng mỗi liều kế tiếp có tác dụng ít hơn liều trước đó. Lượng thuốc trong máu ở ngày thứ nhất là 50mg, và mỗi ngày sau đó giảm chỉ còn một nửa so với ngày kế trước đó. Tính tổng lượng thuốc (tính bằng mg) trong máu của bệnh nhân sau khi dùng thuốc 10 ngày liên tiếp.

Xem lời giải



*
*


*

Đăng ký để nhận lời giải hay và tài liệu miễn phí

Cho phép toancapba.com gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.