Giải hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\\left( {{a^2} + 1} \right)x + 6y = 2a\end{array} \right.\) trong mỗi trường hợp sau:


LG a

\(a = -1\)

Phương pháp giải:

Thay \(a\) trong mỗi trường hợp

Giải hệ phương trình bằng phương pháp thế 

Lời giải chi tiết:

Với \(a = - 1,\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + 6y = - 2\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + 3y = 1\\x + 3y = - 1\end{array} \right.\)

Từ đó, ta thấy ngay hệ phương trình vô nghiệm


LG b

\(a = 0\)

Phương pháp giải:

Thay \(a\) trong mỗi trường hợp

Giải hệ phương trình bằng phương pháp thế 

Lời giải chi tiết:

Với \(a = 0,\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\x + 6y = 0\end{array} \right.\)

Từ phương trình thứ nhất ta có \(x = 1 - 3y\)

Thế \(x\) trong phương trình thứ hai bởi \(x = 1 - 3y\), ta được

\(1 - 3y + 6y = 0 \Leftrightarrow 3y = - 1 \Leftrightarrow y = - \dfrac{1}{3}\)

Từ đó \(x = 1 - 3.\left( { - \dfrac{1}{3}} \right) = 2\).

Bạn đang xem: Toán lớp 9 tập 2 bài 12 trang 15

Vậy với \(a = 0,\) hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {2; - \dfrac{1}{3}} \right)\).


LG c

\(a = 1 \)

Phương pháp giải:

Thay \(a\) trong mỗi trường hợp

Giải hệ phương trình bằng phương pháp thế 

Lời giải chi tiết:

Với \(a = 1\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + 6y = 2\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + 3y = 1\\x + 3y = 1\end{array} \right.\)

Từ đó dễ thấy hệ phương trình có vô số nghiệm. Hơn nữa, tập nghiệm của nó chính là nghiệm của phương trình \(x + 3y = 1.\)

Do \(x + 3y = 1 \Leftrightarrow x = 1 - 3y\) nên tập nghiệm của phương trình \(x + 3y = 1\) là \(S = \left\{ {\left( {1 - 3y;y} \right)|y \in \mathbb{R}} \right\}\)

Vậy với \(a = 1,\) hệ phương trình đã cho có vô số nghiệm \(\left( {x;y} \right)\) thỏa mãn \(\left\{ \begin{array}{l}x = 1 - 3y\\y \in \mathbb{R}\end{array} \right.\)

Loigiaihay.com


*
Bình luận
*
Chia sẻ
Chia sẻ
Bình chọn:
3.8 trên 6 phiếu
Bài tiếp theo
*


Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay


Báo lỗi - Góp ý

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

*


*
*
*
*
*
*


TẢI APP ĐỂ XEM OFFLINE



Bài giải mới nhất


× Góp ý cho loigiaihay.com

Hãy viết chi tiết giúp Loigiaihay.com

Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!


Gửi góp ý Hủy bỏ
× Báo lỗi góp ý

Vấn đề em gặp phải là gì ?

Sai chính tả

Giải khó hiểu

Giải sai

Lỗi khác

Hãy viết chi tiết giúp Loigiaihay.com


Gửi góp ý Hủy bỏ
× Báo lỗi

Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?

Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!


Họ và tên:


Gửi Hủy bỏ
Liên hệ Chính sách
*
*


*

*

Đăng ký để nhận lời giải hay và tài liệu miễn phí

Cho phép loigiaihay.com gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.

Giải bài tập 12,13,14, 15 trang 15; Bài 16,17, 18,19 trang 16 SGK Toán 9 tập 2: Giải hệ phương trình bằng phương pháp thế – Chương 3 Đại 9.

A. Tóm tắt lý thuyết Giải hệ phương trình bằng phương pháp thế

1. Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế gồm hai bước sau:

Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn).

Bước 2: Dùng phương trình mới để thay thế cho phương trình thứ hai trong hệ (và giữ nguyên phương trình thứ nhất).

2. Tóm tắt cách giải hệ phương trình bằng phương pháp thế.

Bước 1: Dùng quy tắc thế biến đổi hệ phương trình đã cho để được một hệ phương trình mới, trong đó có một phương trình một ẩn.

Bước 2: Giải phương trình một ẩn vừa có, rồi suy ra nghiệm của hệ đã cho.

3. Chú ý: Nếu thấy xuất hiện phương trình có các hệ số của hai ẩn đểu bằng 0 thì hệ phương trình đã cho có thể có vô số nghiệm hoặc vô nghiệm.

B. Giải bài tập Toán 9 tập 2 bài: Giải hệ phương trình bằng phương pháp thế trang 15,16.

Bài 12. Giải các hệ phương trình sau bằng phương pháp thế:

*

Hướng dẫn: a) Từ x – y = 3 ⇒ x = 3 + y.

Thay x = 3 + y vào phương trình 3x – 4y = 2.

Ta được 3(3 + y) – 4y = 2 ⇔ 9 + 3y – 4y = 2.

⇔ -y = -7 ⇔ y = 7

Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.

Vậy hệ phương trình có nghiệm (10; 7).

b) Từ 4x + y = 2 ⇒ y = 2 – 4x.

Thay y = 2 – 4x vào phương trình 7x – 3y = 5.

Ta được 7x – 3(2 – 4x) = 5 ⇔ 7x – 6 + 12x = 5.

⇔ 19x = 11 ⇔ x =11/19

Thay x =11/19 vào y = 2 – 4x ta được y = 2 – 4.11/19= 2 – 44/19= -6/19

Hệ phương trình có nghiệm (11/9; -6/19)

c) Từ x + 3y = -2 ⇒ x = -2 – 3y.

Xem thêm: Giải bài tập toán 10 bài 10 bài 10 trang 60, 61, 62, 63, 64, 65 kết nối tri thức

Thay vào 5x – 4y = 11 ta được 5(-2 – 3y) – 4y = 11

⇔ -10 – 15y – 4y = 11

⇔ -19y = 21 ⇔ y = -21/19

Nên x = -2 -3(-21/19) = -2 + 63/19 = 25/19

Vậy hệ phương trình có nghiệm (25/19; – 21/19)

Bài 13. Giải các hệ phương trình sau bằng phương pháp thế:

*

Giải: 

*

Từ phương trình (1) ⇒ 2y = 3x -11 ⇔

Thế (3) vào y trong phương trình (2):

⇔ 8x -15x + 55 = 6 (Quy đồng mẫu số 2 vế)

⇔ -7x = -49 ⇔ x = 7.

Thế x = 7 vào (3) ta được 

⇔ y = 5. Nghiệm của hệ phương trình đã cho là (7; 5)

*

Từ phương trình (1) ⇒

*

Thế (3) vào x trong phương trình (2):


⇔ 10y + 30 – 24y = 9 (Quy đồng mẫu số 2 vế)

⇔ -14y = -21 ⇔ y =3/2

Thế y = 3/2 vào (3) ta được

*

Vậy hệ phương trình có nghiệm (3;3/2).

Bài 14 trang 15. Giải các hệ phương trình bằng phương pháp thế:

*

Giải: a) Từ phương trình thứ nhất ta có x = -y√5.

Thế vào x trong phương trình thứ hai ta được:

-y√5.√5+ 3y = 1 – √5⇔ -2y = 1 – √5

*

Từ đó:

*

Vậy hệ phương trình có nghiệm: (x, y) =

b) Từ phương trình thứ hai ta có y = 4 – 2√3- 4x.

Thế vào y trong phương trình thứ hai được

(2 -√3 )x – 3(4 – 2√3- 4x) = 2 + 5√3⇔ (14 – √3 )x = 14 – √3⇔ x = 1

Từ đó y = 4 – 2√3- 4 . 1 = -2√3

Vậy hệ phương trình có nghiệm:(x; y) = (1; -2√3)

Bài 15 trang 15 Toán 9. Giải hệ phương trình

trong mỗi trường hợp sau:

a) a = -1; b) a = 0; c) a = 1.

Hướng dẫn: a) Khi a = -1, ta có hệ phương trình

*

Hệ phương trình vô nghiệm.

b) Khi a = 0, ta có hệ

Từ phương trình thứ nhất ta có x = 1 – 3y.

Thế vào x trong phương trình thứ hai, được:


1 – 3y + 6y = 0 ⇔ 3y = -1 ⇔ y = -1/3

Từ đó x = 1 – 3(-1/3) = 2

Hệ phương trình có nghiệm (x; y) = (2; -1/3).

c) Khi a = 1, ta có hệ

*

Hệ phương trình có vô số nghiệm.

Bài 16. Giải hệ phương trình

*

Đáp án: a)

*

Từ phương trình (1) ⇔ y = 3x – 5 (3)

Thế (3) vào y trong phương trình (2): 5x + 2(3x – 5) = 23

⇔ 5x + 6x – 10 = 23 ⇔ 11x = 33 ⇔x = 3

Thay x = 3 vào (3) ta có y = 3.3 – 5 = 4.

Vậy hệ có nghiệm (x; y) = (3; 4).

b)

*

Từ phương trình (2) ⇔ 2x – y = -8 ⇔ y = 2x + 8 (3)

Thế (3) vào y trong phương trình (1): 3x + 5(2x + 8) = 1

⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39

⇔ x = -3

Thay x = 3 vào (3) ta có y = 2(-3) + 8 = 2.

Vậy hệ có nghiệm (x; y) = (-3; 2).

c)

*

Phương trình (1) ⇔ x = 2/3y (3)

Thế (3) vào x trong phương trình (2): 2/3y + y = 10 ⇔ 5/3y = 10

⇔ y = 6.

Thay y = 6 vào (3) ta có x = 2/3. 6 = 4

Vậy nghiệm của hệ là (x; y) = (4; 6).

Bài 17 trang 16 Toán 9. Giải hệ phương trình sau bằng phương pháp thế.

*
Hướng dẫn bài 17:

a) 

*

Từ phương trình (2) ⇔ x = √2 – y√3 (3)

Thế (3) vào (1): ( √2 – y√3)√2 – y√3 = 1

⇔ √3y(√2 + 1) = 1 ⇔

*

Từ đó

*

Vậy có nghiệm

*

b) 

*

Từ phương trình (2) ⇔ y = 1 – √10 – x√2 (3)

Thế (3) vào (1): x – 2√2(1 – √10 – x√2) = √5

⇔ 5x = 2√2 – 3√5 ⇔

*

Từ đó

*

Vậy hệ có nghiệm

*

c) 

*

Từ phương trình (2) ⇔ x = 1 – (√2 + 1)y (3)

Thế (3) vào (1): (√2 – 1)<1 – (√2 + 1)y> – y = √2 ⇔ -2y = 1 ⇔ y = -1/2

Từ đó x = 1 – (√2 + 1)(-1/2) = (3+ √2)/2

Vậy hệ có nghiệm (x; y) = ( (3+ √2)/2; -1/2)

Bài 18. a) Xác định các hệ số a và b, biết rằng hệ phương trình

Có nghiệm là (1; -2)

b) Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là (√2 – 1; √2).

Lời giải: a) Hệ phương trình có nghiệm là (1; -2) có nghĩa là xảy ra

*

b) Hệ phương trình có nghiệm là (√2 – 1; √2),

*

Bài 19. Biết rằng: Đa thức P(x) chia hết cho đa thức x – a khi và chỉ khi P(a) = 0.

Hãy tìm các giá trị của m và n sao cho đa thức sau đồng thời chia hết cho x + 1 và x – 3:

P(x) = mx3 + (m – 2)x2 – (3n – 5)x – 4n.

Giải: P(x) chia hết cho x + 1 ⇔ P(-1) = -m + (m – 2) + (3n – 5) – 4n = 0 hay -7 -n = 0 (1)

P(x) chia hết cho x – 3 ⇔ P(3) = 27m + 9(m – 2) – 3(3n – 5) – 4n = 0 hay 36m -13m = 3 (2)