6.1. Bạn đang xem: Toán 10 bài 15
Lời giải
Ý a, b vì với mỗi $x$ chỉ có duy tốt nhất 1 quý giá $y$.
6.2. Hãy cho một ví dụ về hàm số được cho bởi bảng hoặc biểu đồ. Hãy đã cho thấy tập xác định và tập cực hiếm của hàm số đó.
Cách 1: Hàm số cho bởi bảng
ví dụ như 1: Thống kê sô ca mắc covid vào 10 ngày đầu tháng 8 năm 2021 (theo bạn dạng tin dịch covid-19 của bộ y tế).
Ngày | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số ca | 2025 | 2267 | 2173 | 935 | 1537 | 1497 | 2049 | 2002 | 1642 | 1466 |
Tập xác minh : $D = 1;2;3;4;5;6;7;8;9;10 $.
Tập giá trị : $T = left 2025;2267;2173;935;1537;1497;2049;2002;1642;1466 ight$.
Cách 2: Hàm số cho bởi biểu đồ.
⮚Ví dụ 2:
6.3. search tập xác định của các hàm số sau:a) $y = 2x^3 + 3x + 1$; b) $y = fracx – 1x^2 – 3x + 2$ c) $y = sqrt x + 1 + sqrt 1 – x $.
Lời giải
a) $y = 2x^3 + 3x + 1$;Tập khẳng định : $D = mathbbR$.b) $y = fracx – 1x^2 – 3x + 2$Hàm số $y = fracx – 1x^2 – 3x + 2$ xác định $ Leftrightarrow x^2 – 3x + 2 e 0 Leftrightarrow left{ egingatheredx e 1 hfill \x e 2 hfill \endgathered ight.$.Vậy $D = mathbbRackslash left 1;2 ight$.c) $y = sqrt x + 1 + sqrt 1 – x $.Hàm số $y = sqrt x + 1 + sqrt 1 – x $ xác minh $ Leftrightarrow left{ egingatheredx + 1 geqslant 0 hfill \1 – x geqslant 0 hfill \endgathered ight. Leftrightarrow – 1 leqslant x leqslant 1$.Vậy $D = left< – 1;1 ight>$.
6.4. tra cứu tập xác định và tập quý hiếm của mỗi hàm số sau:
a) $y = 2x + 3$ b) $y = 2x^2$
Lời giải
a) $y = 2x + 3$
Tập xác định : $D = mathbbR$.
Tập quý hiếm :$T = mathbbR$.
b) $y = 2x^2$
Tập xác minh : $D = mathbbR$.
Xem thêm: Đề thi toán nâng cao lớp 4 kết nối tri thức, toán nâng cao lớp 4
Tập cực hiếm :$T = left< 0; + infty ight)$.
6.5. Vẽ vật thị những hàm số sau còn chỉ ra các khoảng đồng biến, nghịch phát triển thành của chúng.
a) $y = – 2x + 1$; b)$y = – frac12x^2$.
Lời giải
a)$y = – 2x + 1$;
Hàm số luôn nghịch thay đổi trên $mathbbR$.
b)$y = – frac12x^2$.
Hàm số đồng đổi thay trên khoảng $left( – infty ;0 ight)$ cùng nghịch phát triển thành trên khoảng $left( 0; + infty ight)$.
6.6. Giá mướn xe xe hơi tự lái là 1,2 triệu đồng một ngày mang đến hai ngày thứ nhất và 900 ngàn đồng cho mỗi ngày tiếp theo. Tổng số chi phí $T$ nên trả là một hàm số của số ngày $x$ mà người mướn xe.
a) Viết công thức của hàm số $T = Tleft( x ight)$.
b) Tính $Tleft( 2 ight),Tleft( 3 ight),Tleft( 5 ight)$ và cho biết ý nghĩa sâu sắc của mỗi quý giá này.
Lời giải
a) Viết phương pháp của hàm số $T = Tleft( x ight)$.
$Tleft( x ight) = left{ egingathered1200000x ext khi ext 0 leqslant x leqslant 2 hfill \2400000 + 900000left( x – 2 ight) ext khi ext x > 2 hfill \endgathered ight.$
b) Tính $Tleft( 2 ight),Tleft( 3 ight),Tleft( 5 ight)$ và mang đến biết chân thành và ý nghĩa của mỗi giá trị này.
Một gương lõm có mặt cắt hình parabol như hình 1, tất cả tiêu điểm giải pháp đỉnh 5 cm. Cho thấy thêm bề sâu của gương là 45 cm. Tính khoảng cách AB
Tổng đúng theo đề thi học kì 2 lớp 10 tất cả các môn - Chân trời sáng sủa tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Một gương lõm xuất hiện cắt hình parabol như hình 1, bao gồm tiêu điểm giải pháp đỉnh 5 cm. Cho thấy thêm bề sâu của gương là 45 cm. Tính khoảng cách AB
Phương pháp giải - Xem đưa ra tiết
Bước 1: tự tiêu điểm ( F(pover 2; 0)) viết phương trình chủ yếu tắc của parabol bao gồm dạng (y^2 = 2px)
Bước 2: ráng (x = 45) vào phương trình trên tra cứu (y_A)
Bước 3: khẳng định khoảng giải pháp (AB = 2. Y_A )
Từ đưa thiết ta gồm tiêu điểm (F(5;0)), suy ra (fracp2 = 5) xuất xắc (p=10).
Vậy phương trình thiết yếu tắc của parabol là: (y^2 = 20x)
Chiều sâu của gương là 45 cm khớp ứng với (x_A = 45), cố gắng (x_A = 45) vào phương trình (y^2 = 20x) ta có: (y^2 = 20.45 = 900 Rightarrow y_A = 30 Rightarrow AB = 2y_A = 60 )
Vậy khoảng cách AB là (60 cm)
Bình luận
phân tách sẻ
Bài tiếp theo
2k8 tham gia ngay group phân tách sẻ, hiệp thương tài liệu học tập miễn phí
Vấn đề em gặp phải là gì ?
Sai bao gồm tả
Giải khó khăn hiểu
Giải sai
Lỗi khác
Hãy viết cụ thể giúp toancapba.com
Cảm ơn bạn đã thực hiện toancapba.com. Đội ngũ cô giáo cần cải thiện điều gì để chúng ta cho nội dung bài viết này 5* vậy?
Vui lòng để lại tin tức để ad có thể liên hệ cùng với em nhé!
Đăng cam kết để nhận lời giải hay với tài liệu miễn phí
Cho phép toancapba.com gởi các thông tin đến bạn để nhận thấy các giải mã hay tương tự như tài liệu miễn phí.